

libimagequant Python Bindings Documentation

Welcome to the documentation for the unofficial Python bindings for
libimagequant [https://pngquant.org/lib/].

These bindings are designed to be Pythonic, yet still faithful to the C API.
Almost every C function can be used through the bindings. The Python classes
correspond directly to C structs, and each Python function represents one C
function. However, some changes have been made:

	All functions have been made into class methods.

	Functions that are effectively getters and setters for struct members are
represented as class properties.

	Values that are semantically boolean but are of the int type in C
are given the Python bool type.

	Error-code return values are instead expressed by raising exceptions (see
Exceptions).

	A few functions – mostly ones that don’t make much sense in Python – are
not supported (see Functions with no direct Python equivalent).

This documentation is intentionally terse, so as to avoid duplicating the
information in the official C API documentation. The recommended way to use
this page is to first peruse the official libimagequant C API documentation [https://pngquant.org/lib/] to see how you could accomplish your goals in C,
and to then search for the C function names here to find the equivalent Python
APIs.

You may want to take a look at Examples, Installation, or the
API reference.

Note

You might also be interested in the companion library
libimagequant_integrations [https://github.com/RoadrunnerWMC/libimagequant-python-integrations],
which provides helper functions for using libimagequant with many other Python
libraries used for imagery.

Indices and tables

	Index

	Module Index

	Search Page

Examples

Note: instead of copypasting these examples in order to use libimagequant
with PyPNG or other imagery modules, consider using the
libimagequant_integrations [https://github.com/RoadrunnerWMC/libimagequant-python-integrations]
library, which provides robust conversion functions for you.

Here’s the simplest useful example, which uses PyPNG [https://pypng.readthedocs.io/] for loading/saving PNGs:

import libimagequant as liq
import png

Load the image with PyPNG
img = png.Reader(filename='input.png')
width, height, data, info = img.read_flat()

Create libimagequant Attr and Image objects from it
attr = liq.Attr()
input_image = attr.create_rgba(data, width, height, info.get('gamma', 0))

Quantize
result = input_image.quantize(attr)

Get the quantization result
out_pixels = result.remap_image(input_image)
out_palette = result.get_palette()

Save it
writer = png.Writer(input_image.width, input_image.height, palette=out_palette)
with open('output.png', 'wb') as f:
 writer.write_array(f, out_pixels)

And here’s a port of example.c from the libimagequant repository [https://github.com/ImageOptim/libimagequant/blob/master/example.c]:

import sys

import libimagequant as liq
import png

def main(argv):
 if len(argv) < 2:
 print('Please specify a path to a PNG file', file=sys.stderr)
 return 1

 input_png_file_path = argv[1]

 # Load PNG file and decode it as raw RGBA pixels
 # This uses the PyPNG library for PNG reading (not part of libimagequant)

 reader = png.Reader(filename=input_png_file_path)
 width, height, input_rgba_pixels, info = reader.read_flat()

 # Use libimagequant to make a palette for the RGBA pixels

 attr = liq.Attr()
 input_image = attr.create_rgba(input_rgba_pixels, width, height, info.get('gamma', 0))

 result = input_image.quantize(attr)

 # Use libimagequant to make new image pixels from the palette

 result.dithering_level = 1.0

 raw_8bit_pixels = result.remap_image(input_image)
 palette = result.get_palette()

 # Save converted pixels as a PNG file
 # This uses the PyPNG library for PNG writing (not part of libimagequant)
 writer = png.Writer(input_image.width, input_image.height, palette=palette)

 output_png_file_path = 'quantized_example.png'
 with open(output_png_file_path, 'wb') as f:
 writer.write_array(f, raw_8bit_pixels)

 print('Written ' + output_png_file_path)

 # Done.

main(sys.argv)

Installation

Builds (fully unit-tested) are provided for supported versions of CPython [https://www.python.org/] 3 (3.6 through 3.10, at the time of this writing)
on the following platforms:

	x86_64 Windows

	x86 (32-bit) Windows

	x86_64 macOS

	x86_64 Linux (for both the “manylinux2014” [https://www.python.org/dev/peps/pep-0599/] platform and a PEP-600 [https://www.python.org/dev/peps/pep-0600/]-compatible manylinux
platform)

A source distribution (“sdist”) is also available, which should be compatible
with PyPy [https://www.pypy.org/], as well as other platforms and
architectures.

The recommended way to install is through pip. You can try running:

pip install libimagequant

If that doesn’t work, you might have better luck with either of:

python3 -m pip install libimagequant

py -3 -m pip install libimagequant

If for some reason you’d instead like to install from source manually (such as
for debugging), read on.

Building from source

To build from source manually, begin by cloning or downloading the repository.

If desired, you can replace the libimagequant folder with the latest
libimagequant source code from its own repository [https://github.com/ImageOptim/libimagequant].

Install cffi, setuptools and wheel on the Python interpreter you
want the bindings to be built against. For example,

python3 -m pip install --upgrade cffi setuptools wheel

Navigate (in a terminal) to the bindings directory, and run
setup.py bdist_wheel with the Python interpreter you want the bindings to
be built against. For example,

python3 setup.py bdist_wheel

This should create (among other things) a dist folder with a .whl
(wheel) file inside. You can now install that wheel file with pip, or
distribute it.

API reference

Exceptions

Many functions in libimagequant’s C API use liq_error enum return values to
indicate success or errors. Since it is more Pythonic to use exceptions for
this, the Python bindings for those functions convert those return values to
exceptions, which you can catch using try/except. The following table
outlines how they’re mapped:

	liq_error value

	Python exception

	LIQ_OK

	(n/a)

	LIQ_QUALITY_TOO_LOW

	libimagequant.QualityTooLowError

	LIQ_VALUE_OUT_OF_RANGE

	ValueError

	LIQ_OUT_OF_MEMORY

	MemoryError

	LIQ_ABORTED

	libimagequant.AbortedError

	LIQ_BITMAP_NOT_AVAILABLE

	libimagequant.BitmapNotAvailableError

	LIQ_BUFFER_TOO_SMALL

	libimagequant.BufferTooSmallError

	LIQ_INVALID_POINTER

	RuntimeError

	LIQ_UNSUPPORTED

	libimagequant.UnsupportedError

Constants

	
libimagequant.LIQ_VERSION and libimagequant.LIQ_VERSION_STRING

	Information about the version of libimagequant currently in use.

Depending on your use case, you may want to use BINDINGS_VERSION
and BINDINGS_VERSION_STRING instead.

Python equivalents of LIQ_VERSION and LIQ_VERSION_STRING.

	
libimagequant.BINDINGS_VERSION and libimagequant.BINDINGS_VERSION_STRING

	Information about the version of the Python bindings currently in use.

The bindings version is the version of libimagequant the bindings were
designed for, with an additional version segment (usually .0). For
example, for the bindings release designed for libimagequant 2.12.5,
BINDINGS_VERSION and BINDINGS_VERSION_STRING would be 2120500 and
'2.12.5.0', respectively.

This will often match LIQ_VERSION and
LIQ_VERSION_STRING (up to the extra segment), but is not
guaranteed to always do so.

Depending on your use case, you may want to use LIQ_VERSION and
LIQ_VERSION_STRING instead.

Classes

	
class libimagequant.Attr

	Python equivalent of the liq_attr struct.

The constructor for this class is the equivalent of liq_attr_create().
liq_attr_destroy() is handled automatically.

	
max_colors

	Python equivalent of liq_get_max_colors() and
liq_set_max_colors().

	Type

	int

	
speed

	Python equivalent of liq_get_speed() and liq_set_speed().

	Type

	int

	
min_opacity

	Python equivalent of liq_get_min_opacity() and
liq_set_min_opacity().

	Type

	int

	
min_posterization

	Python equivalent of liq_get_min_posterization() and
liq_set_min_posterization().

	Type

	int

	
min_quality

	Python equivalent of liq_get_min_quality() and (along with
max_quality) liq_set_quality().

	Type

	int

	
max_quality

	Python equivalent of liq_get_max_quality() and (along with
min_quality) liq_set_quality().

	Type

	int

	
last_index_transparent

	Python equivalent of liq_set_last_index_transparent().

For consistency with the C API, this is a write-only property.

Note

Since the only meaningful values for this variable in the C API are
“zero” and “non-zero,” it is presented as a bool in
these Python bindings.

	Type

	bool

	
copy() → Attr

	Python equivalent of liq_attr_copy().

	Returns

	A copy of this object.

	Return type

	libimagequant.Attr

	
create_rgba(bitmap: bytes, width: int, height: int, gamma: float) → Image

	Python equivalent of liq_image_create_rgba().

	Returns

	The new image created from the provided data.

	Return type

	libimagequant.Image

	
set_log_callback(log_callback_function: Callable[[Attr, str, object], None], user_info: object)

	Python equivalent of liq_set_log_callback().

The signature of the callback function should be
callback(attr: Attr, message: str, user_info: object).

The user_info parameter can be any Python object, which will be
passed to the callback as its third argument.

Call this function with log_callback_function = None to clear the
callback.

	
set_progress_callback(progress_callback_function: Callable[[float, object], bool], user_info: object)

	Python equivalent of liq_attr_set_progress_callback().

The signature of the callback function should be
callback(progress_percent: float, user_info: object) -> bool. If it
returns False, the quantization operation will be aborted (causing
AbortedException to be raised); thus, you should normally
return True from the callback in order for the operation to
proceed.

The user_info parameter can be any Python object, which will be
passed to the callback as its third argument.

Call this function with progress_callback_function = None to clear
the callback.

	
class libimagequant.Histogram(attr: Attr)

	Python equivalent of the liq_histogram struct.

The constructor for this class is the equivalent of
liq_histogram_create(). liq_histogram_destroy() is handled
automatically.

	
add_image(attr: Attr, image: Image)

	Python equivalent of liq_histogram_add_image().

	
add_colors(attr: Attr, entries: List[HistogramEntry], gamma: float)

	Python equivalent of liq_histogram_add_colors().

	
add_fixed_color(color: Color, gamma: float)

	Python equivalent of liq_histogram_add_fixed_color().

	
quantize(options: Attr) → Result

	Python equivalent of liq_histogram_quantize().

	Returns

	The result of the quantization.

	Return type

	libimagequant.Result

	
class libimagequant.HistogramEntry(color: Color, count: int)

	Python equivalent of the liq_histogram_entry struct.

	
color

	Python equivalent of the liq_histogram.color member.

	Type

	libimagequant.Color

	
count

	Python equivalent of the liq_histogram.count member.

	Type

	int

	
class libimagequant.Image

	Python equivalent of the liq_image struct.

This class cannot be instantiated directly. Use
Image.create_rgba() to create it.

liq_image_destroy() is handled automatically.

	
width

	Python equivalent of liq_image_get_width().

This is a read-only property.

	Type

	int

	
height

	Python equivalent of liq_image_get_height().

This is a read-only property.

	Type

	int

	
background

	Python equivalent of liq_image_set_background().

For consistency with the C API, this is a write-only property.

	Type

	libimagequant.Image

	
importance_map

	Python equivalent of liq_image_set_importance_map().

For consistency with the C API, this is a write-only property.

	Type

	bytes

	
add_fixed_color(color: Color)

	Python equivalent of liq_image_add_fixed_color().

	
quantize(options: Attr) → Result

	Python equivalent of liq_image_quantize().

	Returns

	The result of the quantization.

	Return type

	libimagequant.Result

	
class libimagequant.Result

	Python equivalent of the liq_result struct.

This class cannot be instantiated directly. Use
Histogram.quantize() or Image.quantize() to create it.

liq_result_destroy() is handled automatically.

	
dithering_level

	Python equivalent of liq_set_dithering_level().

For consistency with the C API, this is a write-only property.

	Type

	float

	
output_gamma

	Python equivalent of liq_get_output_gamma() and
liq_set_output_gamma().

	Type

	float

	
quantization_error

	Python equivalent of liq_get_quantization_error().

This is a read-only property.

	Type

	float

	
quantization_quality

	Python equivalent of liq_get_quantization_quality().

This is a read-only property.

	Type

	int

	
remapping_error

	Python equivalent of liq_get_remapping_error().

This is a read-only property.

	Type

	float

	
remapping_quality

	Python equivalent of liq_get_remapping_quality().

This is a read-only property.

	Type

	int

	
get_palette() → List[Color]

	Python equivalent of liq_get_palette().

	Returns

	The list of colors.

	Return type

	list of libimagequant.Colors

	
remap_image(input_image: Image) → bytes

	Python equivalent of liq_write_remapped_image().

	Returns

	The pixel data for the remapped image.

	Return type

	bytes

	
set_progress_callback(progress_callback_function: Callable[[float, object], bool], user_info: object)

	Python equivalent of liq_result_set_progress_callback().

The signature of the callback function should be
callback(progress_percent: float, user_info: object) -> bool. If it
returns False, the remapping operation will be aborted (causing
AbortedException to be raised); thus, you should normally
return True from the callback in order for the operation to
proceed.

The user_info parameter can be any Python object, which will be
passed to the callback as its third argument.

Call this function with progress_callback_function = None to clear
the callback.

	
class libimagequant.Color

	Python equivalent of the liq_color struct.

This is simply a collections.namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]
with r, g, b, and a fields.

Please note that the equivalent of a liq_palette struct in these
bindings is a list of instances of this class.

Functions with no direct Python equivalent

	liq_attr_create_with_allocator()

Although “custom allocators” aren’t completely meaningless in Python
(in the context of cffi, in particular), it’s an extremely uncommon case.

If you have a legitimate need for this feature, please open an issue (or,
better, a pull request!). For 99% of cases, Attr’s default
constructor (corresponding to liq_attr_create()) should suffice.

	liq_set_log_flush_callback()

This is unsupported due to issues that arise due to Python’s garbage
collection. Since functions in Python are objects that get
garbage-collected like all other types, there is no guarantee that the
callback will actually still exist when the Attr object is
deleted. This can lead to very weird and inconsistent issues.

Since libimagequant is totally synchronous, the recommended workaround is
to simply flush any logging resources after you finish using your
libimagequant objects.

	liq_image_create_rgba_rows() and liq_image_create_custom()

These are unsupported because Python does not allow for the fine-grained
raw pointer access that would make these functions useful.

Use Image.create_rgba() (corresponding to
liq_image_create_rgba()) instead.

	liq_image_set_memory_ownership()

This is unsupported because it’s too low-level of a concern to expose to
Python programs. Ensuring that memory is managed properly is the
responsibility of the bindings themselves, not your application.

	liq_write_remapped_image_rows()

This is unsupported because Python does not allow for the fine-grained raw
pointer access that would make it useful.

Use Result.remap_image() (corresponding to
liq_write_remapped_image()) instead.

	liq_version()

Use LIQ_VERSION or BINDINGS_VERSION instead,
depending on if you need to check the libimagequant version or the Python
bindings version.

	liq_quantize_image()

This is unsupported because it is deprecated in the C API. Use
Image.quantize() (corresponding to liq_image_quantize())
instead.

Index

 B
 | C
 | D
 | H
 | I
 | L
 | M
 | O
 | Q
 | R
 | S
 | W

B

 	
 	background (libimagequant.Image attribute)

C

 	
 	color (libimagequant.HistogramEntry attribute)

 	
 	count (libimagequant.HistogramEntry attribute)

D

 	
 	dithering_level (libimagequant.Result attribute)

H

 	
 	height (libimagequant.Image attribute)

I

 	
 	importance_map (libimagequant.Image attribute)

L

 	
 	last_index_transparent (libimagequant.Attr attribute)

 	libimagequant.Attr (built-in class)

 	libimagequant.Attr.copy() (built-in function)

 	libimagequant.Attr.create_rgba() (built-in function)

 	libimagequant.Attr.set_log_callback() (built-in function)

 	libimagequant.Attr.set_progress_callback() (built-in function)

 	libimagequant.Color (built-in class)

 	libimagequant.Histogram (built-in class)

 	libimagequant.Histogram.add_colors() (built-in function)

 	libimagequant.Histogram.add_fixed_color() (built-in function)

 	
 	libimagequant.Histogram.add_image() (built-in function)

 	libimagequant.Histogram.quantize() (built-in function)

 	libimagequant.HistogramEntry (built-in class)

 	libimagequant.Image (built-in class)

 	libimagequant.Image.add_fixed_color() (built-in function)

 	libimagequant.Image.quantize() (built-in function)

 	libimagequant.Result (built-in class)

 	libimagequant.Result.get_palette() (built-in function)

 	libimagequant.Result.remap_image() (built-in function)

 	libimagequant.Result.set_progress_callback() (built-in function)

M

 	
 	max_colors (libimagequant.Attr attribute)

 	max_quality (libimagequant.Attr attribute)

 	
 	min_opacity (libimagequant.Attr attribute)

 	min_posterization (libimagequant.Attr attribute)

 	min_quality (libimagequant.Attr attribute)

O

 	
 	output_gamma (libimagequant.Result attribute)

Q

 	
 	quantization_error (libimagequant.Result attribute)

 	
 	quantization_quality (libimagequant.Result attribute)

R

 	
 	remapping_error (libimagequant.Result attribute)

 	
 	remapping_quality (libimagequant.Result attribute)

S

 	
 	speed (libimagequant.Attr attribute)

W

 	
 	width (libimagequant.Image attribute)

 nav.xhtml

 Table of Contents

 		
 libimagequant Python Bindings Documentation

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

